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A Study of Age-Hardening of A1-3"85% Cu by the Divergent X-ray beam Method 
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A1-3.85% Cu single crystals were studied by means of the back-reflection divergent X-ray beam 
method after solution treatment, various modes of quenching and various stages of age-hardening. 
A complete strain analysis was developed by which the principal strains in a crystal or polycrystalline 
material can be determined provided the changes of d-spacings of more than six independent (hkl) 
reflections are recorded. The analysis applied to the various stages of age-hardening of crystals 
subjected to a fast quench after solution treatment disclosed an anisotropy of strain distribution 
in the matrix. The maximum strain corresponding to the ageing stage associated with the formation 
of G. P. zones coincided with one of the [100] directions and shifted about 20 ° when the 0' phase 
was predominant. The anisotropy of strain distribution was interpreted in terms of a preferred 
vacancy migration due to thermal and concentration gradients introduced by quenching. 

1. I n t r o d u c t i o n  

When  an a luminum-r ich  a luminum-coppe r  al loy is 
age-hardened, metas tab le  t ransformat ion  products  are 
formed. These t ransformat ion  products  a lways precip- 
i ta te  on the (100) planes of the ma t r ix  and,  conse- 
quently,  these latt ice planes m a y  be regarded as the 
na tura l  hab i t  planes of the t rans format ion  products  
(Guinier, 1939, 1942; Preston,  1938). 

The metas tab le  t rans format ion  products,  name ly  
G.P. (II) and  0' phase,  are coherent or par t ia l ly  
coherent with the ma t r i x  and  give rise to s t rains 
which, because of the difference in the size of the 
copper and  a luminum atoms, assume considerable 
proportions. 

I t  is the object ive of this  invest igat ion to s tudy  
sys temat ica l ly  by means  of a special high-resolution 
diffraction method  the  coherency strains set up 
between the ma t r ix  and  the  various t rans format ion  
products.  Beyond t ha t  an  a t t e m p t  is being made  to 
elucidate through the  analysis  of the s t ra in  d is t r ibut ion  
the interconnect ion between vacancy migra t ion  and  
the nucleat ion sites of the t ransformat ion  products.  

homogenizat ion of the chemical  composition. Sub- 
sequent ly  most  of the crystals were water-quenched, 
bu t  some of them,  by  contrast,  were also subjected 
to a quenching t r ea tmen t  in different  media  in order 
to s tudy the effects of quenching on the s train distribu- 
t ion in the crystal.  The crystals were then  mounted  
on the X-ray  uni t  and  analyzed by the X- ray  back- 
reflection d ivergent -beam method.  

The controlled anneal ing necessary for the s tudy  of 
cold and warm hardening of the specimens was 
effected by  means  of an ell iptical reflector lamp. 
This l amp was arranged in such a manner  tha t  the 
position of one of the focal points of the ellipsoid 
coincided with the f i lament  of the incandescent  bulb 
and  tha t  of the other focal point  with the specimen 
surface. A thermocouple in contact  with the specimen 
served to register the anneal ing tempera ture  to better  
t h a n  _+ 1 °C. This heat ing a r rangement  proved to be 
very  convenient  and  highly efficient. 
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2. E x p e r i m e n t a l  p r o c e d u r e  

A. Specimen preparation 
The a luminum-3-85% copper single crystals  were 

grown from the mel t  by  the soft mold technique.  
Chemical  analysis  of the s tar t ing  mater ia l  showed tha t  
the content  of Fe, Si, Mn, Mg, Zn, Zr, Ti and  Ag was 
less t han  0.00%. The single crystal  platelets  had  a 
thickness of 1.5 mm.  and  were about  1 x 3  cm. in 
size. Prior to the solution hea t  t r ea tment ,  they  were 
carefully electropolished wi th  Jacque t  solution to 
remove the surface layers. The solution hea t  t r e a tmen t  
was carried out at  540 °C. for 24 hr. to insure complete 

* Present address : Institute for Solid State Physics, Univer- 
sity of Tokyo, Azabu, Minato-Ku, Tokyo, Japan. 
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Fig. I. Optical arrangement for capillary X-ray tube. 1) 
Electromagnetic lenses. 2) Capillary X-ray tube. 3) Elec- 
tron gun. 4) Optical bench with precision scale to locate 
specimen and film position. 5) Tip of capillary tube. 
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B. Description of the back-reflection divergent-beam 
method 
This method is essentially a precision method for 

the determination of lattice parameters and anisotropic 
lattice distortions of single crystals. Although details 
of this method have been given elsewhere (Imura, 
1954, 1957) a brief description pertinent to the latest 
development of apparatus and method will be offered 
here. 

The divergent-beam method utilizes a horizontal 
capillary X-ray tube, shown in Fig. 1, in which an 
electron beam originating from an electron gun (3) 
is focused by means of electromagnetic lenses (1) onto 
the tip of a long capillary tube (5), where a thin metal 
foil is placed as an X-ray target. :By operating the 
tube at  a suitable voltage an X-ray beam with char- 
acteristic radiation emerges from the tip of the X-ray 
tube, exhibiting a divergence of nearly 180 °. When 
this beam impinges on the test crystal, which is placed 
at  a distance of 0-5 ram. from the tip of the capillary 
tube, diffraction patterns of the characteristic spec- 
t rum in transmission as well as in the back-reflection 
region are obtained as shown schematically in Fig. 2. 
To obtain good back-reflection patterns of aluminum 
and its alloys the distance of specimen to X-ray 
source employed varied between 3 and 4 mm. These 
pat terns are analogous to the well known Kossel 
pat terns except tha t  in this case they are produced 
by an X-ray source located outside instead of inside 
the crystal. We have termed these patterns pseudo- 
Kossel patterns. 

Of particular interest to the s tudy of metal crystals 
are the back-reflection pat terns (Figs. 4, 5, 7, 8). 
Referring to Fig. 2, it will be noted tha t  each ellipse* 
of the pseudo-Kossel pat tern  corresponds to a reflec- 
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Fig.  2. Schemat ic  r ep re sen ta t ion  of the  genera t ion  of pseudo-  
Kossel  p a t t e r n s  by  the  d ive rgen t  b e a m  m e t h o d .  

* E x a c t l y  speaking,  the  ellipse like f igure on the  f i lm is 
a curve  of h igher  orders.  I n  th is  t ex t ,  however ,  we call i t  
'el l ipse'  for b rev i ty .  
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tion of a definite (hkl) set of planes. Consequently 
by indexing the reflections and by measuring x~' and 
x~', the coordinates of the extremities of the major 
axis of the ellipses, the lattice spacings of the individual 
(hkl) reflections and the lattice parameters can be 
determined with great precision. These measurements 
are carried out with the aid of the following relations 
(Imura, 1954) : 

F'(x~') = a t a n  (a-fl)+2hb/(a+2b) | 
E'(x~') = - a t a n ( a + f l ) - 2 h b / ( a + 2 b )  I (1) 
2 = 2d sin 0 

where the symbols have the following meanings: 

is the semi-apex angle of the incident X-ray cone 
equal to z / 2 - 0 ,  0 being the Bragg angle, 

fl is the angle subtended by the normal of the reflecting 
(hkl) plane and the axis of the capillary X-ray tube 
(perpendicular to the specimen surface), 

a is the film distance from the X-ray source, 
b is the specimen distance to the X-ray source, 
2h = E'F' is the length of the major axis of the elliptical 

pattern,  
d is the lattice spacing, and 
)~ the wavelength of the characteristic radiation con- 

cerned. 

Since by this method the individual (hkl) reflections 
can be measured simultaneously, the anisotropic 
modifications in structure caused by an anisotropic 
strain distribution can be conveniently studied. Such 
anisotropic distortions of the lattice were observed 
during age-hardening and studied by this diffraction 
method. 

I t  should be noted tha t  in the present study a thin 
brass metal foil was used as X-ray target and con- 
sequently the pseudo-Kossel patterns obtained con- 
sisted of Cu K s  as well as Zn K s  lines (Figs. 4, 5, 7, 8). 
The use of the alloy target offered the additional 
advantage of carrying out precision lattice-parameter 
measurements as a function of wavelengths. 

By determining the d-spacings of more than six 
independent (hkl) reflections and the corresponding 
changes which occur during the age-hardening process 
it was possible to carry out a complete strain analysis 
of the crystal and thus determine the principal strains 
for the various phases of age-hardening. 

What  follows is a theoretical t rea tment  by which 
the principal strains have been determined. 

3. A n a l y s i s  of s tra in  

A. General strain relations 
The state of strain of a solid is a point phenomenon 

which is completely described when the symmetric 
strain tensor T is given (Southwell, 1949). The diagonal 
elements of T are the normal strain components, and 
the sums of its symmetrically paired elements are the 
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shear components referred to a set of orthogonal axes 
through the point. The state of strain in a solid is 
usually inferred from measurements of finite dis- 
placements made on solid boundaries. 

The X-ray divergent beam method described above 
yields information about the state of strain of a 
crystal in a finite but  small neighborhood of a point, 
not by indicating the displacements of the boundary 
of the neighborhood, but  by yielding pseudo-Kossel 
curves deformed by the changes in Bragg angles tha t  
occur around the reflecting ellipses on the crystal 
surface. On this account it will be necessary to employ 
a statistical algorithm to infer an average state of 
strain from measurements of the elements of the 
recorded curves. 

In the following discussion a simplified matr ix 
notation will be used in which vectors are column 
matrices (Patterson, 1959). Here vectors will be 
represented by ordinary letters such as x and H, 
which will be identified as such in the text. If x is 
a column matrix, the transposed row matrix x ' =  
(xl, x2, . . . ,  Xn) will represent the same n-vector. 

The nine components of the strain tensor are 

s.=(~u~/~x~)', ls~.-~u~/~x~)+(~u~/~xA)~ ~ -  ~ ,  , ( 2 )  

i , j = l ,  2 , 3 ,  

where u is a vector point function tha t  represents 
the deformation of the solid. If n is a unit vector, 
the normal strain component in the direction of n is 

sn = n ' T n  , (3) 

and if m is a unit  vector perpendicular to n the shear 
component associated with m, n is 

sm,~ = 2m'  T n  . (4) 

The principal strains are the eigenvalues 2 = 
21, 22, 23, of the homogeneous system 

T n  = ,~n . (5) 

These are the roots, known to be real, of the cubic 

Det ( T -  M ) = 0 ,  (6) 

in which I is the unit matrix. The principal axes 
coincide with the eigenvectors n = n ~ ,  n2, n3, obtained 
by solving the homogeneous system 

( T - , ~ r I ) n = O ;  r = 1 , 2 , 3 .  (7) 

In this reference system T is reduced to a diagonal 
matrix. 

B. The  average s train  tensor 

X-ray diffraction techniques may be used to yield 
information about the state of strain of a crystal in 
the neighborhood of a point by exhibiting measurable 
shifts in the location of the diffraction maxima. 
These maxima result through an averaging process 
over the irradiated volume of the crystal. In  particular, 

the X-ray divergent beam method described above 
yields pseudo-Kossel patterns deformed by the small 
changes in Bragg angle tha t  occur around the reflecting 
ellipses on the surface of the crystal. On this account 
it will be necessary to employ a statistical algorithm 
to lifter an average state of strain from the recorded 
lattice spacing changes. 

For reference we take a point within the irradiated 
volume of the crystal with three mutual ly perpendic- 
ular axes through it. The unit vectors on these lines 
will be designated by i, j ,  It. When the crystal is cubic 
these will coincide with the crystallographic direction 
(100), (010), (001); thcn the components of the vector 
H = ( h k l )  are direction numbers for the family of 
planes H. In the non-cubic crystal it will be necessary 
to transform the Miller indices (hlcl) to (HiH~H~),  
the components of the normal to the planes H in the 
directions ijlc. Although the A1-Cu system considered 
here is cubic the explicit relations for (HiHjH~)  are 
presented for completeness. 

The basic tetrahedron of the crystal lattice may be 
referred to an i jk  system as in Fig. 3. Then the 
direction numbers (H~H~H~) of the normal to the (Mcl) 
plane (that is, the plane tha t  passes through the points 
a/h(lOO),b/lc(OlO),c/l(O01) are given by the deter- 
minants 

0 0 1 
H~ = hlcl/(be) (b/k)sin~ 0 1 , 

(c/1) cos fl sin a (c/1) sin fl 1 

H j  = - hkl/(bc) 
a/h 0 

(b/k) cos y 0 
(c/1) cos fl cos ~ (c/1) sin fl 

1 
1 , 

1 

a/h 0 1 
H~ = hkl/(bc) (b/k) cos y (b/h) sin ~ 1 

(c/l) cos fl cos ~ (c/1) cos fl sin a 1 

(s) 

The factor hkl/bc reduces H~, H~, Hk to dimension- 
less linear function of h, k, I. 

In  what follows the crystal is assumed to be cubic; 
if the crystal is not cubic then Hi, Hi, Hk are sub- 
st i tuted for h, k, I wherever these occur in the following 
discussion. 

Equations (3) and (4) may now be written 

I//128n =/ / '2 / / ,  
[Hl[[H21s12= 2H~TH2  . (9) 

I t  will generally not be possible to observe the 
small relative shifts in reflexion maxima tha t  result 
from shearing strains, so tha t  only the first of these 
equations may be used to determine the state of strain. 
The strain components may be measured and com- 
puted as fractional change (Ad/d)  or per cent change 
(100 d d / d )  in lattice spacing. In either case they  will 
be referred to as strains or as relative change in 
spacing. 
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Fig. 3. Relation of (hkl) to (H~HjHk) in non-cubic crystals. 

Let  sn--Sr be the relat ive change in spacing of the 
Hr-planes. The first  of equat ions (9), which is a 
quadra t ic  form, m a y  be wri t ten 

t ]Hrl2sr--~,~ , (10) 

in which ar and ~ are the 6-vectors 

~x r = (h 2, k 2, 12r, ]¢rlr, lrhr, hrkr) , 

~' = (S11, S22, e33, se3, s31, S12). (11) 

In  order to determine the  six components of ~ or, 
equivalently,  the  nine components of T as shown by 
equations (2), it will be necessary to measure the 
lat t ice spacing in six crystal lographic directions 
Hr, r - - l ,  2 , . . . ,  6. Each  measurement  leads to an 
equat ion of type  (10) and the set of six m a y  be wri t ten 

f l=  A ~  , (12) 

in which fl is a 6-vector with components [Hrlesr, 
and  A is a 6 × 6 ma t r ix  with the components  of a~ 
as the elements of its r th  row. 

This ma t r ix  equat ion m a y  be solved for ~ provided 
tha t  Det  A ~=0; t ha t  is, provided tha t  the six sets 
of numbers  (hr, ]Cr, lr) lead to a mat r ix  of rank  six. 
Generally there appears  to be no simple way  to decide 
whether  a par t icular  set Hr, r - - l ,  2, . . . ,  6 is suitable 
wi thout  constructing A and test ing it in the usual 
way.  If  the  set of vectors Hr consists of two subsets 
of three mutua l ly  orthogonal  vectors, then  D e t A  =0 .  
This is t rue  because the linear invar ian t  of the cubic 
(6) is the sum of the diagonal elements of T, I1 = 
e H +  see+ e33, and this relat ion reduces the six read- 
ings to five independent  readings. 

For  example,  readings t aken  in the  six directions 
(200), (020), (002), (333), (252), (205) are not  sufficient 
because the first three and  the  last  three vectors are 
or thogonal  subsets. On the other  hand  the de te rminant  

associated with the  vectors (200), (020), (002), ( l l l ) ,  
(111), (111) is not  zero and  the  set is acceptable.  

As an i l lustrat ion of the  difficulties t h a t  m a y  result  
in a t t empt ing  to find the s ta te  of stress we take  the  
set of relat ive spacing changes obtained by  the  
divergent  beam method  which are presented in Table 1. 

Table 1. Relative spacing changes 

r hr kr lr Sr 
1 2 2 4 0"45 
2 0 2 4 0"44 
3 i 1 5 0"35 
4 1 1 5 0"29 
5 3 3 3 0"15 
6 2 4 2 0"20 

For this set the  
(12) becomes 

-24  × 0.45~ 
20 × 0 .44 |  
27 × 0 . 3 5 |  = 
27 × 0 .29 |  
27 × 0-15 |  

_27 × 0.20_] 

explicit form of the ma t r ix  equat ion 

4 4 1 6 8  8 
o o 

1 1 25  5 - 5  --  e3~ |  . 
1 1 25 5 5 ee3 I 
9 9 9 9 9 e31| 

_4 16 4 8 4 ez2_l 

I t  m a y  be verified t h a t  the rank  of this ma t r ix  
is 5, so t h a t  the six sets of planes shown in Table 1 
are not independent.  By successive elimination it is 
found t h a t  e31 + e12=0"45, also t ha t  es~ + ele=2"65, 
which shows tha t  the readings are not  consistent. 

Such inconsistencies are to be expected. The 
divergent  beam method  yields a vector  fl with com- 
ponents  t ha t  are fau l ty  est imates of a set of normal  
strains near  some point  within the crystal.  For  ex- 
ample, there are errors inherent  in the measurement  
of the  diameters  of the  pseudo-Kossel figures. Also, 
the evidence of change in latt ice spacing is obtained 
as the result  of diffraction over a conic section which 
t raverses a sequence of states of strain. Two pseudo- 
Kossel figures come from different par t s  of the crystal ,  
so t ha t  it  is quite possible, for instance, to obtain 
different relat ive strains from measurements  of the 
figures resulting simultaneously from the (l 1 l) and 
(333) reflections. 

If  A is of r ank  6 the inconsistency in the measure- 
ments  does not  appear ,  since a unique set of s trains 
is computed.  But  the computed strain system would 
almost  surely be in error, wi thout  there being an 
indication of the magni tudes  of the errors. To minimize 
these errors it will be necessary to record more than  
six strains and to use the method of least squares to 
determine an average value of ~], and thus  of T, 
within the  i r radia ted  region. The r edundancy  in 
measurement  seems also to be required as the simplest 
way  to ensure an independent  set of directions, for 
if any  selection of six out  of N > 6 yields a ma t r ix  of 
r ank  6, the possibility of computing the components 
of T is assured. The redundancy  does not, of course, 
ensure this;  it merely enhances the chance of success. 
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When the number N of readings is greater than 6 
then, instead of the matrix equation (12), one may 
construct the normal matr ix equation 

fl*=A*<~]> (13) 

from which to determine the average vector <~1>, 
and thence the average tensor <T>. Using the notation 

N 
[abc. . . ] = .~  arbrcr. . . 

r = l  

equation (13) may be written 

- [ h ~  IHt2s] - 
[k 2 [H[es] 
[l~ [Hl2s] 
[kl 1Hles] 
[lh |Hies| 

_[hklHlZs]_ 

-[h ' ]  [h2k e| [h212] [h2kl] [hal| [ha/c| ~ V<s~>~ 
[h~}~] [~] [}~l ~.3 E}al] [h}~l] [h}a] ] <s~>| 
[h~l~] [k~l~] [lq [kla] [hl~] [hkZ~] <saa>| 

= [h~l] [kal] [kla] [k~l~] [hkl~] [hk2l] I <e~3>| • 
[hal| [hk21] [hl a| [hkl 2] [h212] [h2kl] I <sa~) [ 

With these values of <sis>, the average strain 
components in the i, j ,  k system, the cubic (6) may 
be constructed and its roots determined. These three 
roots will be the principal average strains, the direc- 
tions corresponding to them in the mean being found 
by solving the three homogenous systems (7). 

This analysis, of course, is not affected by the 
particular technique tha t  may be used to determine 
the changes in lattice spacing. I t  is applicable to the 
s tudy of polycrystalline materials as well as to that  
of single crystals so long as d-spacing changes result 
in strains. 

C. Computation 
The facilities of an I.B.M. 650 were used for the 

computation of the <eij> and for the determination 
of the principal strains and principal axes. 

Using a routine programmed under the title 'Matrix 
Inversion by Gauss|an Elimination' (Gardner, 1956), 
equation (13) was solved for the general case when 
fl* is a 6 x b matrix, with b representing the number 
of different sets of readings of the strains s, all referred 
to the same (h, k, l) planes. 

The principal strains and axes were determined 
using the program headed 'Latent  Roots and Vectors 
of a Matrix' (Granet, i958), which give the latent 
roots, or principal strains, in order of magnitude, 
and their corresponding vectors, or principal axes. 
The latter  are scaled so that  the largest component 
of a vector is normalized to unity. 

Table 2 shows the results of three sets of strain 
components, each consisting of eight determinations 

Table 2. Strain components corresponding to different 
heat treatments of A1-3-85 % Cu crystal 
A B C 

(AIg[d)lO0 (Ad/d)lO0 (Jd/d)lO0 h k l 

- -0 .06 0.24 0.30 0 2 4 
0.02 0.17 0.21 2 2 4 

--0-02 0.13 0-20 1 3 3 
0.13 0.11 0.11 3 3 3 
0.08 0.13 0.16 ] 1 5 
0-00 0.19 0.17 1 1 5 
0.00 0-15 0.15 1 1 5 
0.13 0-19 0.16 3 3 3 

A annea led  a t  205 °C. for  20 hr.  Mix ture  of G.P.  [ I I ]  and 
some 0". 

B annea led  as in A plus 320 °C. for ½ hr.  P r e d o m i n a n t l y  0% 
C annealed  as in A + B + 4 3 0  °C. for  23 hr.  0 phase.  

of relative changes in d-spacing as measured by  the 
divergent beam method. These three sets correspond 
to different heat t reatments of the specimen and, 
therefore, to the presence of different phases or 
mixture of phases in the age hardening process. 

The presence of these transformation phases was 
checked by X-ray and hardness tests and agreed with 
the findings of Silcock et al. (Sileock, Heal & Hardy,  
1953-54, 1955-56). 

Three sets of eight equations of the form (12) are 
obtained in the same way as illustrated by example 
of Table 1. From these, equation (13), with b = 3  
becomes : 

-182 190 310 2o8 3o 20] F<~11>]._ - _  

190 278 446 312 54 44 I ( e l 2 ) |  
310 446 2630 672 30 116 ] <833}[ 
208 312 672 446 116 54[I <~23>I 

46 30 54 30 116 310 l<~a1>l 
20 44 116 54 46 19 [<~1~>j 

95.05 33.12- 
137.61 24-88 
537.21 10-48 
167.67 20-84 

101-99 
155.99 
585.35 

- 203-53 
42.27 
48.57 

15.99 --22.36 
38.97 -25 .04  

(14) 

Using the matrix inversion technique indicated 
above it can be verified that  the rank of A* is six. 

Three sets of (e~j)'s are thus obtained which, 
when substituted in equation (6), will give three sets 
of latent roots and their associated vectors. 

For instance, using the third column of (14) the 
following values are obtained 

(ell> = 0-2791 
< 822 ) = -- 0"0644 
<s33> = --0.0175 (15) 
<s23> = 0"0228 
<e3, ) = - 0"0764 
<e12> = -0"1236 .  

Equation (6) becomes 
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Table  3. Principal 8trains in age-hardened A1-3.85 % Cu crystal, water-quenched after solution treatment 
Maximum strain ~t Intermediate strain )~ Minimum strain ~t a 

Magni- Direc- Magni- Diree- Magni- Direc- 
Heat Phases tude tion Direc- rude tion Direc- rude tion Direc- 

treatment present in % number tion in % number tion in % number tion 
- 

205 °C. for G.P. [II] 0.41 n t 0.05 u 0 0.18 n 1 0.17 u 0 --0.10 n 1 1.00 u 1 
20 hr. + some 0" n 2 1.00 v 1 n 2 0.17 v 0 n~ --0.08 v 0 

n a --0.18 w 0 n s 1-00 w 1 n a --0.15 w 0 

Additional 0' 0.47 n t 0.04 u 0 0.15 n 1 0.15 u 0 --0.03 n 1 1.00 u 1 
annealing n 2 1-00 v 3 n9 0.37 v 1 n 2 --0.08 v 0 
a t320°C,  n a --0.37 w T n a 1.00 w 3 n a 0.12 w 0 
for ½ hr. 

Additional Matrix + in- 0.29 n I 1.00 u 1 --0.08 n 1 0.16 u 0 --0.02 n 1 0.14 u 0 
annealing coherent 0 n 2 --'0.18 v 0 n 2 1-00 v 1 n 2 0.06 v 0 
a t430°C.  (equilibrium n a --0.13 w 0 n a --0.09 w 0 n s 1.00 w 1 
for 23 hr. phase) 

0 . 2 7 9 1 - ) t  - 0 . 0 6 1 8  - 0 . 0 3 8 2  
- 0 . 0 6 1 8  - 0 . 0 6 4 4 - 2  0.0114 - - 0 .  (16) 
- 0 . 0 3 8 2  - 0 . 0 1 1 4  - 0 . 0 1 7 5 -  ~t 

Us ing  the  c o m p u t a t i o n  rou t ine  ind ica t ed  above,  
the  fol lowing l a t e n t  roots  are o b t a i n e d  

21 -- 0.29 
)12 = - 0.08 (17) 
~L3 = -- 0"02.  

S u b s t i t u t i n g  each of these  roots  in e q u a t i o n  (7), 
t h ree  sets  of homogenous  equa t ions  are o b t a i n e d  for 
the  so lu t ion  of the  vectors ,  or p r inc ipa l  axes,  as- 
socia ted  wi th  the  cor responding  eigenvalues .  Fo r  
ins tance ,  for 2t = 0.290, one ob ta ins  f rom e q u a t i o n  (7): 

- 0 . 0 1 0 9 - 0 - 0 6 1 8 - 0 . 0 3 8 2 \ ( n l )  
- 0 . 0 6 1 8  - 0 . 3 5 4 4  0.0114) n2 = 0 .  (18) 
- 0 . 0 3 8 2  0-0114 - 0 . 3 0 7 5 / ~ n 3  

The  values  of nl ,  n2 a n d  ns, w i th  the  la rges t  va lue  
no rma l i zed  to one are :  

nl  -- 1-00 
n2 = - 0 . 1 8  (19) 
n~ -- - 0 . 1 3  . 

The  comple te  so lu t ion  for the  th ree  sets shown in 
Tab le  2 are g iven  in Table  3. 

4. E x p e r i m e n t a l  resul ts  

A grea t  n u m b e r  of pseudo-Kosse l  p a t t e r n s  of t he  
A1-3.85% Cu c rys ta l s  were t a k e n  as a func t ion  of 
ageing,  b u t  on ly  the  mos t  r e p r e s e n t a t i v e  a n d  r e l e v a n t  
ones to t he  s t r a in  ana lys i s  will  be shown here. Fig.  4 
exh ib i t s  the  pseudo-Kosse l  p a t t e r n  o b t a i n e d  im- 
m e d i a t e l y  a f te r  wa te r  quench ing  f rom the  so lu t ion  
h e a t  t r e a t m e n t  a t  540 °C. 

Compar i son  of the  d-values o b t a i n e d  af te r  quench ing  
w i t h  those  o b t a i n e d  a t  the  so lu t ion  h e a t  t r e a t m e n t  
t e m p e r a t u r e  showed  t h a t  the  t h e r m a l  stresses resu l t ing  
f rom quench ing  h a d  v i r t u a l l y  no effect  on the  d-values.  

If ,  u p o n  quenching ,  a n y  va r i a t ions  in  t he  d-values  
occurred,  t h e y  were a t  leas t  b y  orders  of m a g n i t u d e  
smal ler  t h a n  the  effect  i n t r o d u c e d  b y  the  s t ra ins  
assoc ia ted  w i t h  the  f o r m a t i o n  of aggrega tes  or precipi-  
t a t e s  of solute  a toms .  Consequen t ly  t h e  d-values  of 
the  q u e n c h e d  spec imen  could be safe ly  used as refer- 
ence in  the  d e t e r m i n a t i o n  of the  s t r a in  va lues  A d/d 
of t he  aged spec imens  l i s ted  in  Tab le  2. 

Two sa l ient  fea tu res  cha rac te r i zed  t h e  p a t t e r n s  of 
the  aged  specimens.  One was l ine b roaden ing  a n d  the  
o ther  was  l ine sh i f t  w i th  respec t  to  t h e  reference 
p a t t e r n .  The  b roaden ing  effect is u n d o u b t e d l y  as- 
soc ia ted  w i t h  the  l a t t i ce  d i s to r t ions  incur red  b y  the  
m a t r i x  a n d  is due  to  the  coherency  s t r a ins  set  up  
be tween  the  m e t a s t a b l e  t r a n s f o r m a t i o n  p roduc t s  a n d  
the  ma t r ix .  The  l ine sh i f t  zJd/d is assoc ia ted  w i t h  
l a t t i ce  expans ion  or con t rac t ion  a n d  resu l t s  p r inc ipa l ly  
f rom two effects. One is due  to  the  cohe rency  s t r a ins  
descr ibed  above  a n d  the  o ther  due  to  t he  vo lume  
expans ion  of the  m a t r i x  r e su l t ing  f rom the  prec ip i ta-  
t i on  of t h e  smal ler  copper  a toms  in to  zones, l eav ing  
beh ind  a m a t r i x  r ich  in  la rger  a l u m i n u m  a toms.  

Fig .  5 represen t s  the  p a t t e r n  o b t a i n e d  for t he  
spec imen aged  a t  205 °C. for 20 hours  (ageing t r ea t -  
m e n t  A) a n d  corresponds  p r inc ipa l ly  to  a m i x t u r e  
of G.P.  [ I I ]  w i th  some a d m i x t u r e  of 0'. An  a n i s o t r o p y  
of l ine b roaden ing  was observed,  since for t he  (333), 
(533), (115) a n d  (115) ref lec t ions  th i s  effect  was 
p a r t i c u l a r l y  p ronounced .  The  l ine b roaden ing  effect  
was in  the  d i rec t ion  of l a t t i ce  expans ion  a n d  the  
sequence  of Fig.  6 wh ich  represen t s  a p h o t o m e t r i c  
t r a c i n g  of the  (333) l ine profi le  as a f u n c t i o n  of ageing 
affords a g raph ic  v i sua l i za t ion  of t h i s  b roaden ing  
effect.  I t  is i n t e re s t ing  to no te  t h a t  t he  i n t e n s i t y  
d i s t r i b u t i o n  of the  Kal a n d  Ka2 profi le  exh ib i t ed  
mul t ip l e  peaks  (Fig. 6) which  is i nd ica t ive  of a complex  
subs t ruc tu r e  of t he  m a t r i x  resu l t ing  f rom the  coher- 
ency  s t ra ins .  

The  l ine sh i f t  gld/d for th i s  aged  spec imen  was also 
an iso t rop ic  a n d  for the  observable  ref lect ion a t t a i n e d  
i ts  la rges t  va lue  for the  (333) ref lect ion (Table  2). 
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(c) 

(~) 

(0 

(e) 

2 0  

Fig. 6. Effect of ageing on the line profile of (333) matrix 
reflection, l~ecording microphotometer tracing. (a) As 
quenched from 540 °C. (b) Aged at I00 °C. for 96 hr. 
(principally G.P. [I] zones present). (c) Aged at 205 °C. 
for 20 hr. (G.P. [II] + some 0'). (d) Aged at 205 °C. for 50 
hr. (G.P. [II]+0'). (e) Aged at 320 °C. for one-half hr. (0"). 

After continued ageing at 320 °C. for one half hour 
(ageing treatment B) the G.P. zones had disappeared 
and only the 0' phase was prevalent. In contra- 
distinction to the line broadening produced by the 
treatment A the line broadening resulting from treat- 
ment B affected all (hkl) lines. Furthermore, the 
broadening was not solely in the direction of lattice 
expansion but was nearly uniform in all directions 
with respect to the position of the peak intensity. 
This resulted in a sharp decrease in the resolution of 
the Ko~ doublets (Figs. 5 and 6). The line shift, how- 
ever, was anisotropic, occurring in the direction of 
lattice expansion, and as shown in column 2 of Table 2 
was most salient for the (024) reflection. 

Fig. 7 represents a composite diagram of the pseudo- 
Kossel pattern pertaining to the ageing treatment B 

superimposed over that  obtained after solution heat 
treatment and subsequent water quenching. This 
composite diagram may serve to aid the visual 
realization of the anisotropic matrix expansion. 

Annealing at 430 °C. for 23 hr. followed by slow 
cooling (ageing treatment C) established the equilib- 
rium phase 0 and therefore eliminated the coherency 
strains associated with the preceding metastable 
transformation products. Consequently, in Fig. 8 the 
lines became sharp and the resolution of the K a  
doublet was again restored. 

5. Discuss ion  

As may be seen from Table 3 the principal strains 
associated with ageing treatment A have such direc- 
tions that  the (010) cube planes may be identified 
as the principal habit planes on which the G.P. 
zones have formed. I t  appeared, however, that  the 
formation of the G.P.  zones did not take place 
uniformly on all {100} planes but favored a certain 
set of planes, namely (010). This became apparent 
from the direction of the principal strain, ~,1, which is 
associated with the matrix distortion of the (010) 
planes. Precipitation of the G.P. zones must have 
occurred to a lesser degree on the (001) planes and 
was practically negligible on the (100) planes, since 
for these planes the magnitude of the minimum strain, 
~t3, assumes an appreciable negative value, namely 
--0.10%. 

The largest value for the maximum strain in the 
matrix was reached when the partially coherent O' 
precipitate was formed (ageing treatment B) and it 
is interesting to note that  the maximum hardness 
obtained during ageing corresponds precisely to this 
stage of matrix deformation (Silcock, Heal & Hardy, 
1955-56; Hardy & Heal, 1956). I t  is also worth noting 
that  the maximum strain no longer is perpendicular 
to the (010) planes but more nearly perpendicular to 
the (03i) planes. This implies that, due to the pre- 
ponderance of 0', the direction of the maximum strain 
has shifted about 20 ° from that exerted predominantly 
by the G.P. zones. Such a shift in the direction of the 
principal strain would be expected if we take into 
account the fact that  the 0' platelets precipitate 
preferentially on dislocation helices. The latter are 
said to be formed by the winding up of screw disloca- 
tion about their axes as a result of the condensation 
of excess vacancies retained by quenching (Thomas & 
Whelan, 1959; Thomas & Nutting, 1959). The precip- 
itation of G.P. zones, on the other hand, is not 
associated with the dislocation helices and their 
nucleation sites appear to be unaffected by the 
existing dislocation network of the matrix (Nutting). 

Finally, it should be pointed out that  the strain 
analysis of the matrix disclosed still a strain distribu- 
tion for the ageing treatment C which resulted in the 
precipitation of the incoherent 0 equilibrium phase. 
From this one may conclude that  the interface formed 



ACTA CRYSTALLOGRAPHICA, VOL. 15, 1962--IMURA, WEISSMA-~S AND SLADE, JR. PLATE 18 

Fig. 4. Baek-reflection divergent  beam pa t t e rn  of A1-3.85 % Cu. 
Solut ion hea t - t rea ted  at  540 °C. and  water-quenched.  

Fig. 5. Back-reflection divergent  beam pa t t e rn  of AI-3.85% Cu. 
Aged for 20 hr. a t  205 °C. after the  hea t  t r e a t m e n t  men t ioned  in the  legend of Fig. 4. 

[To face ~. 792 
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:Fig. 7. Back-reflection divergent beam pattern of A1-3.85% Cu. 
Superposition of two patterns, one for the specimen quenched from 540 °C. and the other for the same specimen followed 

by ageing for one-half hr. at 320 °C,., exhibiting anisotropic lattice expansion. 

:Fig. 8. Back-reflection divergent beam pattern of A1-3.85% Cu. 
Aged at 430 °C. for 23 hr. :Note the return of sharpness of the matrix reflections after precipitation of 0 phase. 
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~etween the partially coherent 0' precipitate and the 
natrix consisted of a dislocation network which upon 
~ontinued ageing could not be entirely removed. 

When ageing experiments were performed after 
quenching in less drastic media than water, namely 
mineral oil (slow quench), it was disclosed by the 
divergent beam method that nearly isotropic lattice 
deformation of the matrix was obtained. I t  appeared, 
therefore, that  the anisotropy of lattice distortions, 
besides being dependent on the shape of the specimen, 
was intimately linked with the mode of quenching. 
In the light of these experimental observations one 
may explain the resulting anisotropy principally by 
two interdependent effects, both of which would cause 
a preferred directional migration of quenched-in 
excess vacancies and thus lead to a directional biasing 
for the nucleation sites of the G.P. zones. These two 
effects introduced by quenching are: l) thermal 
gradient, and 2) concentration gradient of quenched-in 
excess vacancies. 

The effect of these gradients on the formation of 
preferred nucleation may be visualized as follows: 
Immediately upon quenching the specimen surface 
reaches a temperature value which is considerably 
lower than that  of the interior. Since the thickness 
of the specimen platelet is small compared to the 
other size dimensions the migration of vacancies will 
no longer follow a random walk but will be principally 
controlled by the thermal gradient and consequently 
will predominantly occur in the direction parallel to 
the specimen thickness. This implies that  a con- 
comitant diffusion of the copper atoms would take 
place in the same preferred direction but in the 
opposite sense from that  of the vacancy migration. 
In addition one has to take into consideration that  
at the specimen surface the concentration of the 
quench-in vacancies in excess of the equilibrium 
concentration is greater than in the interior and that  
under the influence of the thermal gradient a migra- 
tion of these excess vacancies will also take place 
parallel to the specimen thickness. Thus the preferred 
diffusion direction of the copper atoms would lead to 
preferred nucleation sites of the G.P. zones and to 
concomitant anisotropic lattice distortion of the 
matrix. As expected, the preferred nucleation sites 
will depend on the specimen orientation, that is, on 
the orientation of the (001) planes relative to the 
preferred diffusion direction. They will reach a max- 

imum value for (001) planes perpendicular and a 
minimum value for those parallel to the preferred 
diffusion direction. 

In support of the concept of preferential vacancy 
migration from the surface to the interior it should 
be pointed out that  recent microscopic examinations 
of metals injected with helium by using them as targets 
of energetic alpha particles revealed the free surfaces 
as the principal suppliers of vacancies (Barnes, 1960). 

In conclusion it should be noted that  the biasing 
of nucleation sites of the G.P. zones may have an 
important practical implication, since it may be 
possible to effect directional hardening of alloys by 
a suitable selection of specimen shape and quenching 
medium. 
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