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A Study of Age-Hardening of Al-3:85% Cu by the Divergent X-ray beam Method

By T. IMURA,* S. WEISSMANN AND J. J. SLADE, JR.
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(Received 11 January 1961 and in revised form 18 October 1961)

Al-3:859 Cu single crystals were studied by means of the back-reflection divergent X.ray beam
method after solution treatment, various modes of quenching and various stages of age-hardening.
A complete strain analysis was developed by which the principal strains in a erystal or polyerystalline
material can be determined provided the changes of d-spacings of more than six independent (hkl)
reflections are recorded. The analysis applied to the various stages of age-hardening of crystals
subjected to a fast quench after solution treatment disclosed an anisotropy of strain distribution
in the matrix. The maximum strain corresponding to the ageing stage associated with the formation
of G. P. zones coincided with one of the [100] directions and shifted about 20° when the 0’ phase
was predominant. The anisotropy of strain distribution was interpreted in terms of a preferred
vacancy migration due to thermal and concentration gradients introduced by quenching.

1. Introduction

When an aluminum-rich aluminum-copper alloy is
age-hardened, metastable transformation products are
formed. These transformation products always precip-
itate on the {100} planes of the matrix and, conse-
quently, these lattice planes may be regarded as the
natural habit planes of the transformation products
(Guinier, 1939, 1942; Preston, 1938).

The metastable transformation products, namely
G.P. (II) and 6" phase, are coherent or partially
coherent with the matrix and give rise to strains
which, because of the difference in the size of the
copper and aluminum atoms, assume considerable
proportions.

It is the objective of this investigation to study
systematically by means of a special high-resolution
diffraction method the coherency strains set up
between the matrix and the various transformation
products. Beyond that an attempt is being made to
elucidate through the analysis of the strain distribution
the interconnection between vacancy migration and
the nucleation sites of the transformation produets,

2. Experimental procedure

A, Specimen preparation

The aluminum-3-859, copper single crystals were
grown from the melt by the soft mold technique.
Chemical analysis of the starting material showed that
the content of Fe, Si, Mn, Mg, Zn, Zr, Ti and Ag was
less than 0:009%. The single crystal platelets had a
thickness of 1:5 mm. and were about 1x3 cm. in
size, Prior to the solution heat treatment, they were
carefully electropolished with Jaequet solution to
remove the surface layers. The solution heat treatment
was carried out at 540 °C. for 24 hr. to insure complete

* Present address: Institute for Solid State Physics, Univer-
sity of Tokyo, Azabu, Minato-Ku, Tokyo, Japan.

homogenization of the chemical composition. Sub-
sequently most of the crystals were water-quenched,
but some of them, by contrast, were also subjected
to a quenching treatment in different media in order
to study the effects of quenching on the strain distribu-
tion in the crystal. The erystals were then mounted
on the X-ray unit and analyzed by the X-ray back-
reflection divergent-beam method.

The controlled annealing necessary for the study of
cold and warm hardening of the specimens was
effected by means of an elliptical reflector lamp.
This lamp was arranged in such a manner that the
position of one of the focal points of the ellipsoid
coincided with the filament of the incandescent bulb
and that of the other focal point with the specimen
surface. A thermocouple in contact with the specimen
served to register the annealing temperature to better
than +1 °C. This heating arrangement proved to be
very convenient and highly efficient.

Fig. 1. Optical arrangement for capillary X.ray tube. 1)
Electromagnetic lenses. 2) Capillary X:.ray tube. 3) Elec-
tron gun. 4) Optical bench with precision scale to locate
specimen and film position. 5) Tip of capillary tube,
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B. Description of the back-reflection divergent-beam
method

This method is essentially a precision method for
the determination of lattice parameters and anisotropic
lattice distortions of single crystals. Although details
of this method have been given elsewhere (Imura,
1954, 1957) a brief description pertinent to the latest
development of apparatus and method will be offered
here.

The divergent-beam method utilizes a horizontal
capillary X-ray tube, shown in Fig. 1, in which an
electron beam originating from an electron gun (3)
is focused by means of electromagnetic lenses (1) onto
the tip of a long capillary tube (5), where a thin metal
foil is placed as an X.ray target. By operating the
tube at a suitable voltage an X-ray beam with char-
acteristic radiation emerges from the tip of the X-ray
tube, exhibiting a divergence of nearly 180°. When
this beam impinges on the test crystal, which is placed
at a distance of 0-5 mm. from the tip of the capillary
tube, diffraction patterns of the characteristic spec-
trum in transmission as well as in the back-reflection
region are obtained as shown schematically in Fig. 2.
To obtain good back-reflection patterns of aluminum
and its alloys the distance of specimen to X-ray
source employed varied between 3 and 4 mm. These
patterns are analogous to the well known Kossel
patterns except that in this case they are produced
by an X-ray source located outside instead of inside
the crystal. We have termed these patterns pseudo-
Kossel patterns.

Of particular interest to the study of metal crystals
are the back-reflection patterns (Figs.4, 5, 7, 8).
Referring to Fig. 2, it will be noted that each ellipse*
of the pseudo-Kossel pattern corresponds to a reflec-
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Fig. 2, Schematic representation of the generation of pseudo-
Kossel patterns by the divergent beam method.

* Exactly speaking, the ellipse like figure on the film is
& curve of higher orders. In this text, however, we call it
‘ellipse’ for brevity.
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tion of a definite (hkl) set of planes. Consequently
by indexing the reflections and by measuring z;" and
x,', the coordinates of the extremities of the major
axis of the ellipses, the lattice spacings of the individual
(kkl) reflections and the lattice parameters can be
determined with great precision. These measurements
are carried out with the aid of the following relations
(Imura, 1954):

F'(zy') = atan («— B)+2hb/(a+2b)
E'(x;') = —atan (o« + ) —2hb/(a + 2b)
A= 2dsin 0

(1)

where the symbols have the following meanings:

« is the semi-apex angle of the incident X.-ray cone
equal to n/2—0, 0 being the Bragg angle,

{ is the angle subtended by the normal of the reflecting
(hkl) plane and the axis of the capillary X-ray tube
(perpendicular to the specimen surface),

a is the film distance from the X.ray source,

b is the specimen distance to the X-ray source,

2h=E'F’ is the length of the major axis of the elliptical
pattern,

d is the lattice spacing, and

A the wavelength of the characteristic radiation con-
cerned.

Since by this method the individual (%kl) reflections
can be measured simultaneously, the anisotropic
modifications in structure caused by an anisotropic
strain distribution can be conveniently studied. Such
anisotropic distortions of the lattice were observed
during age-hardening and studied by this diffraction
method.

It should be noted that in the present study a thin
brass metal foil was used as X-ray target and con-
sequently the pseudo-Kossel patterns obtained con-
sisted of Cu K« as well as Zn K« lines (Figs.4, 5, 7, 8).
The use of the alloy target offered the additional
advantage of carrying out precision lattice-parameter
measurements as a function of wavelengths.

By determining the d-spacings of more than six
independent (hkl) reflections and the corresponding
changes which occur during the age-hardening process
it was possible to carry out a complete strain analysis
of the crystal and thus determine the principal strains
for the various phases of age-hardening.

What follows is a theoretical treatment by which
the principal strains have been determined.

3. Analysis of strain

A. General strain relations

The state of strain of a solid is a point phenomenon
which is completely described when the symmetric
strain tensor 7' is given (Southwell, 1949). The diagonal
elements of 7' are the normal strain components, and
the sums of its symmetrically paired elements are the
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shear components referred to a set of orthogonal axes
through the point. The state of strain in a solid is
usually inferred from measurements of finite dis-
placements made on solid boundaries.

The X-ray divergent beam method described above
yields information about the state of strain of a
crystal in a finite but small neighborhood of a point,
not by indicating the displacements of the boundary
of the neighborhood, but by yielding pseudo-Kossel
curves deformed by the changes in Bragg angles that
occur around the reflecting ellipses on the crystal
surface. On this account it will be necessary to employ
a statistical algorithm to infer an average state of
strain from measurements of the elements of the
recorded curves.

In the following discussion a simplified matrix
notation will be used in which vectors are column
matrices (Patterson, 1959). Here vectors will be
represented by ordinary letters such as x and H,
which will be identified as such in the text. If x is
a column matrix, the transposed row matrix a'=
(@1, @2, ..., xs) will represent the same n-vector.

The nine components of the strain tensor are

1= (0us/ 0:); bei=4((0uy/ 0xs) + (Owsf O0x5)) ,  (
i:j= 1’ 2) 3 )

[V

)

where u is a vector point function that represents
the deformation of the solid. If » is a unit vector,
the normal strain component in the direction of = is

sn=n"Tn , (3)

and if m is a unit vector perpendicular to n the shear
component associated with m, n is

Sma=2m'Tn . (4)

The principal strains are the eigenvalues A =
M1, A2, A3, of the homogeneous system

Tn=2n. (5)

These are the roots, known to be real, of the cubic

Det (T—AI)=0, (6)

in which I is the unit matrix. The principal axes
coincide with the eigenvectors n=n;, ne, ns, obtained
by solving the homogeneous system

(T—4In=0; r=1,2,3. (7)

In this reference system 7 is reduced to a diagonal
matrix.

B. The average strain tensor

X-ray diffraction techniques may be used to yield
information about the state of strain of a crystal in
the neighborhood of a point by exhibiting measurable
shifts in the location of the diffraction maxima.
These maxima result through an averaging process
over the irradiated volume of the crystal. In particular,
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the X-ray divergent beam method described above
yields pseudo-Kossel patterns deformed by the small
changes in Bragg angle that occur around the reflecting
ellipses on the surface of the crystal. On this account
it will be necessary to employ a statistical algorithm
to infer an average state of strain from the recorded
lattice spacing changes.

For reference we take a point within the irradiated
volume of the crystal with three mutually perpendie-
ular axes through it. The unit vectors on these lines
will be designated by 1, j, k. When the crystal is cubic
these will coincide with the crystallographic direction
(100), (010), (001); then the components of the vector
H=(hkl) are direction numbers for the family of
planes H. In the non-cubic crystal it will be necessary
to transform the Miller indices (kkl) to (H;H;Hy),
the components of the normal to the planes H in the
directions ¢jk. Although the Al-Cu system considered
here is cubic the explicit relations for (H;H;Hy) are
presented for completeness.

The basic tetrahedron of the crystal lattice may be
referred to an ijk system as in Fig.3. Then the
direction numbers (H;H;Hy) of the normal to the (hkl)
plane (that is, the plane that passes through the points
a/k(100), b/k(010), ¢/l(001) are given by the deter-
minants

0 0 1
H; = hEl/(be) | (b/k)siny 0 1,
(¢/lycosfsina  (c/lysinf 1
alh 0 1 l
H; = —hkl/(bc) | (bjk) cosy 0 11,
(c/lycosfeosa  (¢/l)sinf 1 |
alh 0 1
Hy = REl/(bc) | (b/k) cosy (b/R) siny 1.
(c/lyeos fcosx (c/l)cosBsine 1

(8)

The factor Akl/bc reduces H;, H;, H; to dimension-
less linear function of , k, I.

In what follows the crystal is assumed to be cubic;
if the crystal is not cubic then H;, H;, Hy are sub-
stituted for %, k, [ wherever these occur in the following
discussion,

Equations (3) and (4) may now be written

\Hpsy,=H'TH ,
|H1]|H21812=2H1,TH2 . (9)

It will generally not be possible to observe the
small relative shifts in reflexion maxima that result
from shearing strains, so that only the first of these
equations may be used to determine the state of strain.
The strain components may be measured and com-
puted as fractional change (Ad/d) or per cent change
(100 Ad/d) in lattice spacing. In either case they will
be referred to as strains or as relative change in
spacing.
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Fig. 3. Relation of (hki) to (H;H;Hy) in non-cubic crystals.
Let s,=s, be the relative change in spacing of the

H,-planes. The first of equations (9), which is a
quadratic form, may be written

\Hil2s,=o7, (10)
in which «- and % are the 6-vectors
a, = (B2, k7, I, kely, Lihr, hokr)
n' = (&1, 22, €33, 23, €31, €12) - (11)

In order to determine the six components of % or,
equivalently, the nine components of 7' as shown by
equations (2), it will be necessary to measure the
lattice spacing in six crystallographic directions

H,r=1,2,...,6. Each measurement leads to an
equation of type (10) and the set of six may be written
p=An, (12)

in which B is a 6-vector with components |H,|2s,,
and A4 is a 6 x6 matrix with the components of «,
as the elements of its rth row.

This matrix equation may be solved for % provided
that Det A 40; that is, provided that the six sets
of numbers (%, kr, I;) lead to a matrix of rank six.
Generally there appears to be no simple way to decide
whether a particular set H,, =1, 2, ..., 6 is suitable
without constructing 4 and testing it in the usual
way. If the set of vectors H, consists of two subsets
of three mutually orthogonal vectors, then Det4 =0.
This is true because the linear invariant of the cubic
(6) is the sum of the diagonal elements of T, I, =
€11+ €22+ €33, and this relation reduces the six read-
ings to five independent readings.

For example, readings taken in the six directions
(200), (020), (002), (333), (242), (202) are not sufficient
because the first three and the last three vectors are
orthogonal subsets. On the other hand the determinant
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associated with the vectors (200), (020), (002), (111),
(111), (111) is not zero and the set is acceptable.
As an illustration of the difficulties that may result
in attempting to find the state of stress we take the
set of relative spacing changes obtained by the
divergent beam method which are presented in Table 1.

Table 1. Relative spacing changes

Rl
R}

bl

o~
S

Sr
0-45
0-44
0-35
0-29
0-15
0-20

r

S QU WD~ X
O W~ =D b
W W = = b b
DO W Cv O

For this set the explicit form of the matrix equation
(12) becomes

24 % 0-45 4 4168 8 47 [en
20 x 0-44 0 4168 0 O £22
27 X 0‘35 _ 1 1 25 5 —5 —1 €33
270291 |1 1255 5 1 €23
27x0-15 9 9 99 9 9 €31

| 27x0-20 416 48 4 8] | e

It may be verified that the rank of this matrix
is 5, so that the six sets of planes shown in Table 1
are not independent. By successive elimination it is
found that g3+ £2=0-45, also that es;+ 12=2-65,
which shows that the readings are not consistent.

Such inconsistencies are to be expected. The
divergent beam method yields a vector 8 with com-
ponents that are faulty estimates of a set of normal
strains near some point within the crystal. For ex-
ample, there are errors inherent in the measurement
of the diameters of the pseudo-Kossel figures. Also,
the evidence of change in lattice spacing is obtained
as the result of diffraction over a conic section which
traverses a sequence of states of strain. Two pseudo-
Kossel figures come from different parts of the crystal,
so that it is quite possible, for instance, to obtain
different relative strains from measurements of the
figures resulting simultaneously from the (111) and
(333) reflections.

If A is of rank 6 the inconsistency in the measure-
ments does not appear, since a unique set of strains
is computed. But the computed strain system would
almost surely be in error, without there being an
indication of the magnitudes of the errors. To minimize
these errors it will be necessary to record more than
six strains and to use the method of least squares to
determine an average value of #, and thus of T,
within the irradiated region. The redundancy in
measurement seems also to be required as the simplest
way to ensure an independent set of directions, for
if any selection of six out of N >6 yields a matrix of
rank 6, the possibility of computing the components
of T is assured. The redundancy does not, of course,
ensure this; it merely enhances the chance of success.
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When the number N of readings is greater than 6
then, instead of the matrix equation (12), one may
construct the normal matrix equation

pr=4*(n)

from which to determine the average vector {(7),
and thence the average tensor (7). Using the notation

(13)

N
[abc. . .] = ZarbrCr. .o
r=1

equation (13) may be written

[Tk [H 2T

(k2 |H{%s]

(12 [HI2s]

[kl |H|%s)

[lh |H|%s]

| [Rk|H|%s] |
(A% [A2k2] [h2l2] (A1) [A20] [R2k] ] [ Cen)
(hok2) [k4]  [k2l2] (ko1) (RASD] [Rk2] || Cessd
_ | [p2R] [R202) (1] [RI?] [RIP] [AKIR] || eas)
(hekl) [kel) (ki3] [k2E2] [Rki2) (Rk2D] | | {eosd
(AS1) [RA2L] [RIS] [REI2] [Rel2] [hekl] | | (est)

| [hk] [hA?] [Rki2] [hk21] [h2kl) [R2R2] | | Cew |

With these values of (e&i;), the average strain
components in the ¢, j, & system, the cubic (6) may
be constructed and its roots determined. These three
roots will be the principal average strains, the direc-
tions corresponding to them in the mean being found
by solving the three homogenous systems (7).

This analysis, of course, is not affected by the
particular technique that may be used to determine
the changes in lattice spacing. It is applicable to the
study of polycrystalline materials as well as to that
of single crystals so long as d-spacing changes result
in strains.

C. Computation

The facilities of an I.B.M. 650 were used for the
computation of the (&;) and for the determination
of the principal strains and principal axes.

Using a routine programmed under the title ‘Matrix
Inversion by Gaussian Elimination’ (Gardner, 1956),
equation (13) was solved for the general case when
f* is a 6 x b matrix, with b representing the number
of different sets of readings of the strains s, all referred
to the same (&, k, I) planes.

The principal strains and axes were determined
using the program headed ‘Latent Roots and Vectors
of a Matrix’ (Granet, 1958), which give the latent
roots, or principal strains, in order of magnitude,
and their corresponding vectors, or principal axes.
The latter are scaled so that the largest component
of a vector is normalized to unity.

Table 2 shows the results of three sets of strain
components, each consisting of eight determinations

A STUDY OF AGE-HARDENING OF Al-3-859% Cu

Table 2. Strain components corresponding to different
heat treatments of Al-3-859%, Cu crystal

A4 B C
(A4djd)100  (A4d[d)100 (4d/d)100 h k1
—0-06 024 0-30 0 2 4
0-02 0-17 0-21 2 2 4
—0-02 0-13 0-20 1 3 3
0-13 0-11 0-11 3 3 3
0-08 0-13 0-16 115
0-00 0-19 0-17 115
0-00 0-15 0-15 11 5
0-13 0-19 0-16 3 3 3
A annealed at 205 °C. for 20 hr. Mixture of G.P. [II] and
some 6.

B annealed as in 4 plus 320 °C. for } hr. Predominantly .
C annealed as in 4+B+430 °C. for 23 hr. § phase.

of relative changes in d-spacing as measured by the
divergent beam method. These three sets correspond
to different heat treatments of the specimen and,
therefore, to the presence of different phases or
mixture of phases in the age hardening process.

The presence of these transformation phases was
checked by X-ray and hardness tests and agreed with
the findings of Silcock et al. (Silcock, Heal & Hardy,
1953-54, 1955-56).

Three sets of eight equations of the form (12) are
obtained in the same way as illustrated by example
of Table 1. From these, equation (13), with 5=3
becomes:

182 190 310 208 30 207 | <{en)
190 278 446 312 54 44 (ean)
310 446 2630 672 30 116 {es3)
208 312 672 446 116 54 {g23)

30 54 30 116 310 46 {ea)
L 20 44 116 54 46 19| | (e2) |
[[101-99 95-:05 33-127] (14)
15599 137-61 24-88
| 58535 53721 1048
120353 167-67 20-84
4227 1599 —22.36
| 4857 3897 —25-04 |

Using the matrix inversion technique indicated
above it can be verified that the rank of 4% is six.

Three sets of (e;)’s are thus obtained which,
when substituted in equation (6), will give three sets
of latent roots and their associated vectors.

For instance, using the third column of (14) the
following values are obtained

(eu) = 02791

{ea2) = —0-0644

<833> = -0-0175

(s = 00228 (15)
<831> = —-0-0764

{&12) = —0-1236 .

Equation (6) becomes
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Table 3. Principal strains in age-hardened Al-3-85% Cu crystal, water-quenched after solution treatment

Maximum strain 4,

Intermediate strain 4, Minimum strain 4,

Magni-  Direc- Magni-  Direc- Magni-  Direc-

Heat Phases tude tion Direc- tude tion Direc- tude tion Direc-
treatment present in 9% number tion in % number tion in 9% number tion
205 °C. for G.P. [II] 041 n; 005 u« O 018 =n;, 017 w O ~0-10 n;, 100 = 1

20 hr. + some 6’ n, 1100 v 1 n, 017 » 0 nyg —0-:08 v 0
ng —018 w 0 ng 1:00 w1 ng —0:15 w 0
Additional 6’ 047 n; 004 u O 015 =n;, 0156 « O —-003 =n; 1-00 u 1
annealing n, 100 » 3 ny, 037 v 1 n, —0-08 v 0
at 320 °C. ng —0:37 w 1 ng 1:00 w 3 ng 012 w 0
for } hr.
Additional Matrix + in- 029 =n, 100 « 1 —-008 =n; 016 = 0 -002 n; 014 « 0O
annealing coherent 6 n, —0-18 » 0 n, 100 v 1 ny, 006 v O
at 430 °C. (equilibrium ng —0-13 w 0 ng —0-09 w 0 ng 100 w 1
for 23 hr. phase)

0-2791— 1 —0-0618 —0-0382 If, upon quenching, any variations in the d-values

—0:0618 . —0-0644—1 0-0114 =0. (16) occurred, they were at least by orders of magnitude
—0-0382 —0-0114 —0-0175—2 smaller than the effect introduced by the strains

Using the computation routine indicated above,
the following latent roots are obtained

A= 029
A2 = —0-08 (17)
Az = —0Q-02.

Substituting each of these roots in equation (7),
three sets of homogenous equations are obtained for
the solution of the vectors, or principal axes, as-
sociated with the corresponding eigenvalues. For
instance, for A;=0-290, one obtains from equation (7):

—0-0109 —0-0618 —0-0382\ /m
—0:0618 —0-3544¢ 0:0114){nz)=0. (18)
—0-0382 0-0114 —0-3075/ \n3

The values of ni, ne and ng, with the largest value
normalized to one are:

ny = 1'00
ne = —0-18 (19)
ng =—0-13 .

The complete solution for the three sets shown in
Table 2 are given in Table 3.

4. Experimental results

A great number of pseudo-Kossel patterns of the
Al-3-85% Cu crystals were taken as a function of
ageing, but only the most representative and relevant
ones to the strain analysis will be shown here. Fig. 4
exhibits the pseudo-Kossel pattern obtained im-
mediately after water quenching from the solution
heat treatment at 540 °C.

Comparison of the d-values obtained after quenching
with those obtained at the solution heat treatment
temperature showed that the thermal stresses resulting
from quenching had virtually no effect on the d-values.

associated with the formation of aggregates or precipi-
tates of solute atoms. Consequently the d-values of
the quenched specimen could be safely used as refer-
ence in the determination of the strain values Ad/d
of the aged specimens listed in Table 2.

Two salient features characterized the patterns of
the aged specimens. One was line broadening and the
other was line shift with respect to the reference
pattern. The broadening effect is undoubtedly as-
sociated with the lattice distortions incurred by the
matrix and is due to the coherency strains set up
between the metastable transformation products and
the matrix. The line shift Ad/d is associated with
lattice expansion or contraction and results principally
from two effects. One is due to the coherency strains
described above and the other due to the volume
expansion of the matrix resulting from the precipita-
tion of the smaller copper atoms into zones, leaving
behind a matrix rich in larger aluminum atoms.

Fig. 5 represents the pattern obtained for the
specimen aged at 205 °C. for 20 hours (ageing treat-
ment A) and corresponds principally to a mixture
of G.P. [IT] with some admixture of §’. An anisotropy
of line broadening was observed, since for the (333),
(333), (115) and (115) reflections this effect was
particularly pronounced. The line broadening effect
was in the direction of lattice expansion and the
sequence of Fig. 6 which represents a photometric
tracing of the (333) line profile as a function of ageing
affords a graphic visualization of this broadening
effect. It is interesting to note that the intensity
distribution of the K« and Kxg profile exhibited
multiple peaks (Fig. 6) which is indicative of a complex
substructure of the matrix resulting from the coher-
ency strains.

The line shift Ad/d for this aged specimen was also
anisotropic and for the observable reflection attained
its largest value for the (333) reflection (Table 2).
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Relative intensity ——»

(e)

20 —

Fig. 6. Effect of ageing on the line profile of (333) matrix
reflection. Recording microphotometer tracing. (a) As
quenched from 540 °C. (b) Aged at 100 °C. for 96 hr.
(principally G.P. [I] zones present). (c) Aged at 205 °C.
for 20 hr. (G.P.[II] +some §’). (d) Aged at 205 °C. for 50
hr. (G.P. [II]+6"). (e) Aged at 320 °C. for one-half hr. ().

After continued ageing at 320 °C. for one half hour
(ageing treatment B) the G.P. zones had disappeared
and only the 6 phase was prevalent. In contra-
distinction to the line broadening produced by the
treatment 4 the line broadening resulting from treat-
ment B affected all (kkl) lines. Furthermore, the
broadening was not solely in the direction of lattice
expansion but was nearly uniform in all directions
with respect to the position of the peak intensity.
This resulted in a sharp decrease in the resolution of
the Ko doublets (Figs. 5 and 6). The line shift, how-
ever, was anisotropic, occurring in the direction of
lattice expansion, and as shown in column 2 of Table 2
was most salient for the (024) reflection.

Fig. 7 represents a composite diagram of the pseudo-
Kossel pattern pertaining to the ageing treatment B
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superimposed over that obtained after solution heat
treatment and subsequent water quenching. This
composite diagram may serve to aid the visual
realization of the anisotropic matrix expansion.

Annealing at 430 °C. for 23 hr. followed by slow
cooling (ageing treatment C) established the equilib-
rium phase 6 and therefore eliminated the coherency
strains associated with the preceding metastable
transformation products. Consequently, in Fig. 8 the
lines became sharp and the resolution of the K«
doublet was again restored.

5. Discussion

As may be seen from Table 3 the principal strains
associated with ageing treatment A have such direc-
tions that the (010) cube planes may be identified
as the principal habit planes on which the G.P.
zones have formed. It appeared, however, that the
formation of the G.P. zones did not take place
uniformly on all {100} planes but favored a certain
set of planes, namely (010). This became apparent
from the direction of the principal strain, Z;, which is
associated with the matrix distortion of the (010)
planes. Precipitation of the G.P. zones must have
occurred to a lesser degree on the (001) planes and
was practically negligible on the (100) planes, since
for these planes the magnitude of the minimum strain,
A3, assumes an appreciable negative value, namely
—0-10%.

The largest value for the maximum strain in the
matrix was reached when the partially coherent 6’
precipitate was formed (ageing treatment B) and it
is interesting to note that the maximum hardness
obtained during ageing corresponds precisely to this
stage of matrix deformation (Silcock, Heal & Hardy,
1955-56; Hardy & Heal, 1956). It is also worth noting
that the maximum strain no longer is perpendicular
to the (010) planes but more nearly perpendicular to
the (031) planes. This implies that, due to the pre-
ponderance of ¢, the direction of the maximum strain
has shifted about 20° from that exerted predominantly
by the G.P. zones. Such a shift in the direction of the
principal strain would be expected if we take into
account the fact that the 6§ platelets precipitate
preferentially on dislocation helices. The latter are
said to be formed by the winding up of screw disloca-
tion about their axes as a result of the condensation
of excess vacancies retained by quenching (Thomas &
Whelan, 1959; Thomas & Nutting, 1959). The precip-
itation of G.P. zones, on the other hand, is not
associated with the dislocation helices and their
nucleation sites appear to be unaffected by the
existing dislocation network of the matrix (Nutting).

Finally, it should be pointed out that the strain
analysis of the matrix disclosed still a strain distribu-
tion for the ageing treatment C' which resulted in the
precipitation of the incoherent § equilibrium phase.
From this one may conclude that the interface formed
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Fig. 4. Baek-reflection divergent beam pattern of Al-3-859%, Cu.
Solution heat-treated at 540 °C. and water-quenched.

Fig. 5. Back-reflection divergent beam pattern of Al-3-85%, Cu.
Aged for 20 hr. at 205 °C. after the heat treatment mentioned in the legend of Fig. 4.

[T'o face p. 792
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Fig. 7. Back-reflection divergent beam pattern of Al-3-859, Cu.
Superposition of two patterns, one for the specimen quenched from 540 °C. and the other for the same specimen followed
by ageing for one-half hr. at 320 °C'., exhibiting anisotropic lattice expansion.

Fig. 8. Back-reflection divergent beam pattern of Al-3-85%, Cu.
Aged at 430 °C. for 23 hr. Note the return of sharpness of the matrix reflections after precipitation of i phase,
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detween the partially coherent §' precipitate and the
natrix consisted of a dislocation network which upon
:ontinued ageing could not be entirely removed.

When ageing experiments were performed after
quenching in less drastic media than water, namely
mineral oil (slow quench), it was disclosed by the
divergent beam method that nearly isotropic lattice
deformation of the matrix was obtained. It appeared,
therefore, that the anisotropy of lattice distortions,
besides being dependent on the shape of the specimen,
was intimately linked with the mode of quenching.
In the light of these experimental observations one
may explain the resulting anisotropy principally by
two interdependent effects, both of which would cause
a preferred directional migration of quenched-in
excess vacancies and thus lead to a directional biasing
for the nucleation sites of the G.P. zones. These two
effects introduced by quenching are: 1) thermal
gradient, and 2) concentration gradient of quenched-in
excess vacancies.

The effect of these gradients on the formation of
preferred nucleation may be visualized as follows:
Immediately upon quenching the specimen surface
reaches a temperature value which is considerably
lower than that of the interior. Since the thickness
of the specimen platelet is small compared to the
other size dimensions the migration of vacancies will
no longer follow a random walk but will be principally
controlled by the thermal gradient and consequently
will predominantly occur in the direction parallel to
the specimen thickness. This implies that a con-
comitant diffusion of the copper atoms would take
place in the same preferred direction but in the
opposite sense from that of the vacancy migration.
In addition one has to take into consideration that
at the specimen surface the concentration of the
quench-in vacancies in excess of the equilibrium
concentration is greater than in the interior and that
under the influence of the thermal gradient a migra-
tion of these excess vacancies will also take place
parallel to the specimen thickness. Thus the preferred
diffusion direction of the copper atoms would lead to
preferred nucleation sites of the G.P. zones and to
concomitant anisotropic lattice distortion of the
matrix. As expected, the preferred nucleation sites
will depend on the specimen orientation, that is, on
the orientation of the (001) planes relative to the
preferred diffusion direction. They will reach a max-

793

imum value for (001) planes perpendicular and a
minimum value for those parallel to the preferred
diffusion direction.

In support of the concept of preferential vacancy
migration from the surface to the interior it should
be pointed out that recent microscopic examinations
of metals injected with helium by using them as targets
of energetic alpha particles revealed the free surfaces
as the principal suppliers of vacancies (Barnes, 1960).

In conclusion it should be noted that the biasing
of nucleation sites of the G.P. zones may have an
important practical implication, since it may be
possible to effect directional hardening of alloys by
a suitable selection of specimen shape and quenching
medium.
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